module Data.Functor.Contravariant.Divisible
(
Divisible(..), divided, conquered, liftD
, Decidable(..), chosen, lost
) where
import Control.Applicative
import Control.Applicative.Backwards
import Control.Arrow
import Control.Monad.Trans.Error
import Control.Monad.Trans.Except
import Control.Monad.Trans.Identity
import Control.Monad.Trans.List
import Control.Monad.Trans.Maybe
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.RWS.Strict as Strict
import Control.Monad.Trans.Reader
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Strict as Strict
import Data.Either
import Data.Functor.Compose
import Data.Functor.Constant
import Data.Functor.Contravariant
import Data.Functor.Product
import Data.Functor.Reverse
import Data.Void
#if MIN_VERSION_base(4,8,0)
import Data.Monoid (Alt(..))
#else
import Data.Monoid (Monoid(..))
#endif
#if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged)
import Data.Proxy
#endif
#if MIN_VERSION_StateVar
import Data.StateVar
#endif
#if __GLASGOW_HASKELL__ >= 702
#define GHC_GENERICS
import GHC.Generics
#endif
class Contravariant f => Divisible f where
divide :: (a -> (b, c)) -> f b -> f c -> f a
conquer :: f a
divided :: Divisible f => f a -> f b -> f (a, b)
divided = divide id
conquered :: Divisible f => f ()
conquered = conquer
liftD :: Divisible f => (a -> b) -> f b -> f a
liftD f = divide ((,) () . f) conquer
instance Monoid r => Divisible (Op r) where
divide f (Op g) (Op h) = Op $ \a -> case f a of
(b, c) -> g b `mappend` h c
conquer = Op $ const mempty
instance Divisible Comparison where
divide f (Comparison g) (Comparison h) = Comparison $ \a b -> case f a of
(a',a'') -> case f b of
(b',b'') -> g a' b' `mappend` h a'' b''
conquer = Comparison $ \_ _ -> EQ
instance Divisible Equivalence where
divide f (Equivalence g) (Equivalence h) = Equivalence $ \a b -> case f a of
(a',a'') -> case f b of
(b',b'') -> g a' b' && h a'' b''
conquer = Equivalence $ \_ _ -> True
instance Divisible Predicate where
divide f (Predicate g) (Predicate h) = Predicate $ \a -> case f a of
(b, c) -> g b && h c
conquer = Predicate $ const True
instance Monoid m => Divisible (Const m) where
divide _ (Const a) (Const b) = Const (mappend a b)
conquer = Const mempty
#if MIN_VERSION_base(4,8,0)
instance Divisible f => Divisible (Alt f) where
divide f (Alt l) (Alt r) = Alt $ divide f l r
conquer = Alt conquer
#endif
#ifdef GHC_GENERICS
instance Divisible U1 where
divide _ U1 U1 = U1
conquer = U1
instance Divisible f => Divisible (Rec1 f) where
divide f (Rec1 l) (Rec1 r) = Rec1 $ divide f l r
conquer = Rec1 conquer
instance Divisible f => Divisible (M1 i c f) where
divide f (M1 l) (M1 r) = M1 $ divide f l r
conquer = M1 conquer
instance (Divisible f, Divisible g) => Divisible (f :*: g) where
divide f (l1 :*: r1) (l2 :*: r2) = divide f l1 l2 :*: divide f r1 r2
conquer = conquer :*: conquer
instance (Applicative f, Divisible g) => Divisible (f :.: g) where
divide f (Comp1 l) (Comp1 r) = Comp1 (divide f <$> l <*> r)
conquer = Comp1 $ pure conquer
#endif
instance Divisible f => Divisible (Backwards f) where
divide f (Backwards l) (Backwards r) = Backwards $ divide f l r
conquer = Backwards conquer
instance Divisible m => Divisible (ErrorT e m) where
divide f (ErrorT l) (ErrorT r) = ErrorT $ divide (funzip . fmap f) l r
conquer = ErrorT conquer
instance Divisible m => Divisible (ExceptT e m) where
divide f (ExceptT l) (ExceptT r) = ExceptT $ divide (funzip . fmap f) l r
conquer = ExceptT conquer
instance Divisible f => Divisible (IdentityT f) where
divide f (IdentityT l) (IdentityT r) = IdentityT $ divide f l r
conquer = IdentityT conquer
instance Divisible m => Divisible (ListT m) where
divide f (ListT l) (ListT r) = ListT $ divide (funzip . map f) l r
conquer = ListT conquer
instance Divisible m => Divisible (MaybeT m) where
divide f (MaybeT l) (MaybeT r) = MaybeT $ divide (funzip . fmap f) l r
conquer = MaybeT conquer
instance Divisible m => Divisible (ReaderT r m) where
divide abc (ReaderT rmb) (ReaderT rmc) = ReaderT $ \r -> divide abc (rmb r) (rmc r)
conquer = ReaderT $ \_ -> conquer
instance Divisible m => Divisible (Lazy.RWST r w s m) where
divide abc (Lazy.RWST rsmb) (Lazy.RWST rsmc) = Lazy.RWST $ \r s ->
divide (\ ~(a, s', w) -> case abc a of
~(b, c) -> ((b, s', w), (c, s', w)))
(rsmb r s) (rsmc r s)
conquer = Lazy.RWST $ \_ _ -> conquer
instance Divisible m => Divisible (Strict.RWST r w s m) where
divide abc (Strict.RWST rsmb) (Strict.RWST rsmc) = Strict.RWST $ \r s ->
divide (\(a, s', w) -> case abc a of
(b, c) -> ((b, s', w), (c, s', w)))
(rsmb r s) (rsmc r s)
conquer = Strict.RWST $ \_ _ -> conquer
instance Divisible m => Divisible (Lazy.StateT s m) where
divide f (Lazy.StateT l) (Lazy.StateT r) = Lazy.StateT $ \s ->
divide (lazyFanout f) (l s) (r s)
conquer = Lazy.StateT $ \_ -> conquer
instance Divisible m => Divisible (Strict.StateT s m) where
divide f (Strict.StateT l) (Strict.StateT r) = Strict.StateT $ \s ->
divide (strictFanout f) (l s) (r s)
conquer = Strict.StateT $ \_ -> conquer
instance Divisible m => Divisible (Lazy.WriterT w m) where
divide f (Lazy.WriterT l) (Lazy.WriterT r) = Lazy.WriterT $
divide (lazyFanout f) l r
conquer = Lazy.WriterT conquer
instance Divisible m => Divisible (Strict.WriterT w m) where
divide f (Strict.WriterT l) (Strict.WriterT r) = Strict.WriterT $
divide (strictFanout f) l r
conquer = Strict.WriterT conquer
instance (Applicative f, Divisible g) => Divisible (Compose f g) where
divide f (Compose l) (Compose r) = Compose (divide f <$> l <*> r)
conquer = Compose $ pure conquer
instance Monoid m => Divisible (Constant m) where
divide _ (Constant l) (Constant r) = Constant $ mappend l r
conquer = Constant mempty
instance (Divisible f, Divisible g) => Divisible (Product f g) where
divide f (Pair l1 r1) (Pair l2 r2) = Pair (divide f l1 l2) (divide f r1 r2)
conquer = Pair conquer conquer
instance Divisible f => Divisible (Reverse f) where
divide f (Reverse l) (Reverse r) = Reverse $ divide f l r
conquer = Reverse conquer
#if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged)
instance Divisible Proxy where
divide _ Proxy Proxy = Proxy
conquer = Proxy
#endif
#if MIN_VERSION_StateVar
instance Divisible SettableStateVar where
divide k (SettableStateVar l) (SettableStateVar r) = SettableStateVar $ \ a -> case k a of
(b, c) -> l b >> r c
conquer = SettableStateVar $ \_ -> return ()
#endif
lazyFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout f ~(a, s) = case f a of
~(b, c) -> ((b, s), (c, s))
strictFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout f (a, s) = case f a of
(b, c) -> ((b, s), (c, s))
funzip :: Functor f => f (a, b) -> (f a, f b)
funzip = fmap fst &&& fmap snd
class Divisible f => Decidable f where
lose :: (a -> Void) -> f a
choose :: (a -> Either b c) -> f b -> f c -> f a
lost :: Decidable f => f Void
lost = lose id
chosen :: Decidable f => f b -> f c -> f (Either b c)
chosen = choose id
instance Decidable Comparison where
lose f = Comparison $ \a _ -> absurd (f a)
choose f (Comparison g) (Comparison h) = Comparison $ \a b -> case f a of
Left c -> case f b of
Left d -> g c d
Right{} -> LT
Right c -> case f b of
Left{} -> GT
Right d -> h c d
instance Decidable Equivalence where
lose f = Equivalence $ \a -> absurd (f a)
choose f (Equivalence g) (Equivalence h) = Equivalence $ \a b -> case f a of
Left c -> case f b of
Left d -> g c d
Right{} -> False
Right c -> case f b of
Left{} -> False
Right d -> h c d
instance Decidable Predicate where
lose f = Predicate $ \a -> absurd (f a)
choose f (Predicate g) (Predicate h) = Predicate $ either g h . f
instance Monoid r => Decidable (Op r) where
lose f = Op $ absurd . f
choose f (Op g) (Op h) = Op $ either g h . f
#if MIN_VERSION_base(4,8,0)
instance Decidable f => Decidable (Alt f) where
lose = Alt . lose
choose f (Alt l) (Alt r) = Alt $ choose f l r
#endif
#ifdef GHC_GENERICS
instance Decidable U1 where
lose _ = U1
choose _ U1 U1 = U1
instance Decidable f => Decidable (Rec1 f) where
lose = Rec1 . lose
choose f (Rec1 l) (Rec1 r) = Rec1 $ choose f l r
instance Decidable f => Decidable (M1 i c f) where
lose = M1 . lose
choose f (M1 l) (M1 r) = M1 $ choose f l r
instance (Decidable f, Decidable g) => Decidable (f :*: g) where
lose f = lose f :*: lose f
choose f (l1 :*: r1) (l2 :*: r2) = choose f l1 l2 :*: choose f r1 r2
instance (Applicative f, Decidable g) => Decidable (f :.: g) where
lose = Comp1 . pure . lose
choose f (Comp1 l) (Comp1 r) = Comp1 (choose f <$> l <*> r)
#endif
instance Decidable f => Decidable (Backwards f) where
lose = Backwards . lose
choose f (Backwards l) (Backwards r) = Backwards $ choose f l r
instance Decidable f => Decidable (IdentityT f) where
lose = IdentityT . lose
choose f (IdentityT l) (IdentityT r) = IdentityT $ choose f l r
instance Decidable m => Decidable (ReaderT r m) where
lose f = ReaderT $ \_ -> lose f
choose abc (ReaderT rmb) (ReaderT rmc) = ReaderT $ \r -> choose abc (rmb r) (rmc r)
instance Decidable m => Decidable (Lazy.RWST r w s m) where
lose f = Lazy.RWST $ \_ _ -> contramap (\ ~(a, _, _) -> a) (lose f)
choose abc (Lazy.RWST rsmb) (Lazy.RWST rsmc) = Lazy.RWST $ \r s ->
choose (\ ~(a, s', w) -> either (Left . betuple3 s' w)
(Right . betuple3 s' w)
(abc a))
(rsmb r s) (rsmc r s)
instance Decidable m => Decidable (Strict.RWST r w s m) where
lose f = Strict.RWST $ \_ _ -> contramap (\(a, _, _) -> a) (lose f)
choose abc (Strict.RWST rsmb) (Strict.RWST rsmc) = Strict.RWST $ \r s ->
choose (\(a, s', w) -> either (Left . betuple3 s' w)
(Right . betuple3 s' w)
(abc a))
(rsmb r s) (rsmc r s)
instance Divisible m => Decidable (ListT m) where
lose _ = ListT conquer
choose f (ListT l) (ListT r) = ListT $ divide ((lefts &&& rights) . map f) l r
instance Divisible m => Decidable (MaybeT m) where
lose _ = MaybeT conquer
choose f (MaybeT l) (MaybeT r) = MaybeT $
divide ( maybe (Nothing, Nothing)
(either (\b -> (Just b, Nothing))
(\c -> (Nothing, Just c)))
. fmap f) l r
instance Decidable m => Decidable (Lazy.StateT s m) where
lose f = Lazy.StateT $ \_ -> contramap lazyFst (lose f)
choose f (Lazy.StateT l) (Lazy.StateT r) = Lazy.StateT $ \s ->
choose (\ ~(a, s') -> either (Left . betuple s') (Right . betuple s') (f a))
(l s) (r s)
instance Decidable m => Decidable (Strict.StateT s m) where
lose f = Strict.StateT $ \_ -> contramap fst (lose f)
choose f (Strict.StateT l) (Strict.StateT r) = Strict.StateT $ \s ->
choose (\(a, s') -> either (Left . betuple s') (Right . betuple s') (f a))
(l s) (r s)
instance Decidable m => Decidable (Lazy.WriterT w m) where
lose f = Lazy.WriterT $ contramap lazyFst (lose f)
choose f (Lazy.WriterT l) (Lazy.WriterT r) = Lazy.WriterT $
choose (\ ~(a, s') -> either (Left . betuple s') (Right . betuple s') (f a)) l r
instance Decidable m => Decidable (Strict.WriterT w m) where
lose f = Strict.WriterT $ contramap fst (lose f)
choose f (Strict.WriterT l) (Strict.WriterT r) = Strict.WriterT $
choose (\(a, s') -> either (Left . betuple s') (Right . betuple s') (f a)) l r
instance (Applicative f, Decidable g) => Decidable (Compose f g) where
lose = Compose . pure . lose
choose f (Compose l) (Compose r) = Compose (choose f <$> l <*> r)
instance (Decidable f, Decidable g) => Decidable (Product f g) where
lose f = Pair (lose f) (lose f)
choose f (Pair l1 r1) (Pair l2 r2) = Pair (choose f l1 l2) (choose f r1 r2)
instance Decidable f => Decidable (Reverse f) where
lose = Reverse . lose
choose f (Reverse l) (Reverse r) = Reverse $ choose f l r
betuple :: s -> a -> (a, s)
betuple s a = (a, s)
betuple3 :: s -> w -> a -> (a, s, w)
betuple3 s w a = (a, s, w)
lazyFst :: (a, b) -> a
lazyFst ~(a, _) = a
#if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged)
instance Decidable Proxy where
lose _ = Proxy
choose _ Proxy Proxy = Proxy
#endif
#if MIN_VERSION_StateVar
instance Decidable SettableVar where
lose k = SettableStateVar (absurd . k)
choose k (SettableStateVar l) (SettableStateVar r) = SettableStateVar $ \ a -> case k a of
Left b -> l b
Right c -> r c
#endif